Chapter 12 Differentiation
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1. The area of a sector of a circle of radius r cm is 36 cmz.
a. Show that the perimeter, P cm, of the sector is such that P = 2r + 7r—2
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b. Hence, given that r can vary, find the stationary value of P and determine its

nature.
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2.(a) Giventhaty = x\/xz + 1, show that % = (af—tl)’p, where a, b and p are positive
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(b) Explain why the graph of y = x\/x2 + 1 has no stationary points.
Rasume y has a shakionary point-
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3. ltis given thaty = (x° + 1)(2x — 3)°.
dy _ PXQxt1
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(if) Hence find the equation of the normal to the curve y = (x2 + 1)(2x — 3)7 at the point

where x = 2, giving your answer in the form ax + by + ¢ = 0, where a, b and ¢ are integers.
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4.

xcm

The diagram shows an open container in the shape of a cuboid of width x cm, length 4x cm and

height h cm. The volume of the container is 800cm”.
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a. Show that the external surface area, S cmz, of the open container is such that
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b. Given that x can vary, find the stationary value of S and determine its nature.
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5. The normal to the curve y = (x — 2)(3x + 1)?at the point where x = % meets the y-axis at
the point P. Find the exact coordinates of the point P.
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6. .A circle has diameter x which is increasing at a constant rate of 0.01 cm s '. Find the exact

rate of change of the area of the circle when x =6 cm.
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7. A curve has equationy = (3x — 5)2 — 2x.
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b. Find the exact value of the x-coordinate of each of the stationary points of the curve.
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c. Use the second derivative test to determine the nature of each of the stationary points.
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8. Find the equation of the normal to the curve y = +/8x + 5 at the point where x = % giving

your answer in the form ax + by + ¢ = 0, where a, b and c are integers.
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9. A solid circular cylinder has a base radius of r cm and a height of h cm. The cylinder has a

volume of 12001 cm3 and a total surface area of S cmz.

a. Showthats = 21rr2 + @

V‘: ]Y’Ll

8 = ’:“Y’-l' 11""
. X
=alr + 9;_7_ 1200 = ¥ h
2 0
- 2Tr + ayoo Nl h = 1202
v v

[3]

The Maths Society



b. Given that h and r can vary, find the stationary value of S and determine its nature.
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10. (i) Differentiate y = (E’)x2 - l)TWIth respect to x.
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(ii) Find the approximate change in y as x increases from \B to \E + p, where p is small.
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11. At the point where x = 1 on the curve y = (_161)2 the normal has a gradient of %
X+

a. Find the value of the constant k. 3
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b. Using your value of k, find the equation of the tangent to the curve at x = 2.
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